where T is the absolute temperature of the column. Values for constants A and B are shown in Table II.

A mixture of these hydrocarbons (a  $C_4$  cut of pyrolysis product of a Romashkino naphtha) was analysed, and  $-40^{\circ}C$  appeared to be the optimum temperature

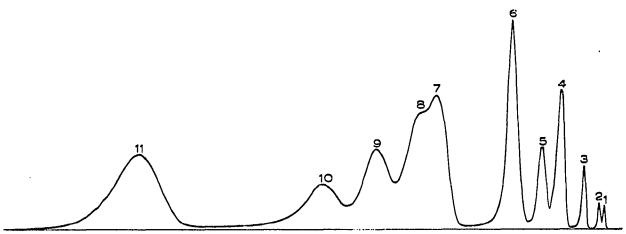



Fig. 1. Chromatogram of a mixture of hydrocarbons at  $-40^{\circ}$ C. I = Air; 2 = ethane; 3 = propane; 4 = propylene; 5 = isobutane; 6 = n-butane; 7 = n-butene-1; 8 = isobutene; 9 =*trans*-butene-2; 10 =*cis*-butene-2; 11 = butadiene-1, 3.

for gas chromatographic separation. Below this temperature further improvement in the resolution was hindered by broadening of the peaks. A typical chromatogram at  $-40^{\circ}$ C is shown in Fig. 1. Even butene-1 and isobutene could be detected separately.

Research Institute for Plastics Industry, Budapest (Hungary)

A. GRÖBLER T. KADA I. CZAJLIK

1 V. G. ZIZIN AND V. I. SOKOLOVA, *Khim. Tekhnol. Topliv i Masel*, 7 (1962) 27. 2 R. L. HOFFMANN, G. R. LIST AND C. E. EVANS, *Nature*, 206 (1965) 823. 3 R. S. PORTER AND J. F. JOHNSON, *Anal. Chem.*, 33 (1961) 1152.

Received September 13th, 1966

J. Chromatog., 27 (1967) 239-240

## Gas chromatography of isomeric butyl halides

Studies of alkyl rearrangements occurring during the preparation of alkyl halides have necessitated the development of methods for the analysis of mixtures of isomers<sup>1</sup>. Alkyl halides are important starting materials in many organic syntheses, *e.g.* in the Wurtz and Grignard reactions, and methods for assessing their isomeric purity are therefore important. Whilst the *n*- and *tert*.-butyl halides were readily separated on a number of stationary phases, including squalane, dinonyl phthalate, and bis (2-cyanoethyl) ether, the *sec.*- and isobutyl halides had identical retention

J. Chromalog., 27 (1967) 240-241

#### NOTES

times under the conditions used and were distinguishable only by infrared analysis<sup>2,3</sup>.

Resolution of all four isomers is now reported and their retention times relative to benzene are given.

# Experimental

*n*-Butyl, sec.-butyl, and isobutyl halides were obtained commercially and distilled before use. tert.-Butyl halides were prepared from tert.-butyl alcohol and the concentrated hydrohalic acids at 20°, followed by washing, drying, and distillation. Structures of all compounds were confirmed by n.m.r. examination.

Gas chromatography was carried out on a Perkin-Elmer F.II chromatograph with flame ionization detector.

The 4 m  $\times$  1/16 in. O.D. stainless steel column was packed with squalane (10 %) on Chromosorb W. Analyses were performed with nitrogen carrier gas, an inlet pressure of 25 p.s.i. affording a flow rate of *ca*. 15 ml/min. Chlorides and bromides were analyzed at 20°, and iodides at 40°.

# Results and discussion

Almost complete resolution of the sec.- and isobutyl halides was achieved with the above-mentioned conditions. Retention data are given in Table I.

## TABLE I

RELATIVE RETENTION TIMES FOR BUTYL HALIDES (BENZENE = 1.00)

| Alkyl group                   | Chlorides | Bromides | Iodides |
|-------------------------------|-----------|----------|---------|
| n-Butyl (1-Butyl)             | 0.87      | 1.98     | 4.54    |
| Isobutyl (2-Methylpropyl)     | 0.62      | I.4I     | 3.33    |
| secButyl (I-Methylpropyl)     | 0.58      | 1.32     | 3.12    |
| tertButyl (1,1-Dimethylethyl) | 0.30      | 0,68     | 1,64    |

The success of the method is attributed to the use of a narrow-bore column, as no resolution of the sec.- and isobutyl halides was obtainable with the same packing in a  $\mathbf{I} \mathbf{m} \times \mathbf{I}/4$  in. O.D. glass column.

Present work confirms earlier findings that sec.-butyl chloride (but no isobutyl chloride) is present in a number of commercial samples of *n*-butyl chloride, and in the reaction product from *n*-butyl alcohol and hydrogen chloride in the presence of zinc chloride. Commercial samples of all other butyl halides examined were free of isomeric impurities.

| Department of Chemistry, Northern Polytechnic, | B. A. CHAUDRI |
|------------------------------------------------|---------------|
| Holloway, London, N. 7. (Great Britain)        | H. R. HUDSON  |

I W. GERRARD AND H. R. HUDSON, Chem. Rev., 65 (1965) 697.

2 W. GERRARD, H. R. HUDSON AND W. S. MURPHY, J. Chem. Soc., (1962) 1099.

3 W. GERRARD AND H. R. HUDSON, J. Chem. Soc., (1963) 1059; ibid., (1964) 2310.

Received October 10th, 1966

. م